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Abstract. The anomalous diffusion exponent d, of random walks on a family of Sierpinski carpets 
are shldied by analytical and numerid methods. We construct an effective bulk resistor and then 
establish the lower and upper bounds ford,, where the lower bound mns out to be the same as 
that obtained with bond-moving renormalization. Numerical simulations on a family of Sierpinski 
carpets confirm our bounds, and show strong dependence of d, on the lacunarity of the catpet. 

Since Mandelbrot (1977, 1982) introduced the concept of fractals in physics, there have been 
many studies of various random waIks on fractal lattices (Havlin and ben-Awaham 1987). but 
only a few studies on infinitely ramified fractals are found in the literature. As one of infinitely 
ramified fractals, Sierpinski carpets, whose geometrical properties are well established (Gefen 
eial1983, Hao and Yang 1987), are studied for many instances; for examples, random walks 
(Rw) (Gefen eta1 1984a, Taguchi 1988a), self-avoiding walks (SAW) (Taguchi 1988b), directed 
Levy flight (Zhuang and Yao 1991), and directed self-avoiding walks (DSAW) (Kim eta1 1992, 
1993). The d f i i o n  exponent & is defined as ( r 2 ( N ) )  - N2IdW, where r ( N )  is the end- 
to-end distance of a random walker with N steps. The exact value of the exponent d, is 
not known on Sierpinski carpets due to their infinite ramifications. Gefen et al(1984a) (more 
recently Taguchi 1988a) constructed resistor networks on carpets to calculated, approximately. 
The values of d, obtained by these methods, however, do not agree very well with those of 
numerical simulations. In this paper we construct an effective bulk resistor to establish the 
lower and upper bounds for the exponent d, on Sierpinski carpets. We also find an improved 
approximation of &, which agrees better with numerical simulations. 

First we generate Sierpinski carpets whose generators are specified by the system size b and 
the hole size 1 (figure I@)). The fractal dimension of the carpet is df = log(b2 - l z ) /  log b. We 
thenconsiderrandom walksonthecarpet. Gefenetal(1984a)andTaguchi(1988a)constructed 
a resistor network by putting resistors on bonds between two subsquares in carpets. By using 
a bond-moving renormalization scheme (Migdal 1976, Kadanoff 1975), they obtained the 
resistance exponent t ,  which is defined by R ( L )  - Lf for the system with linear size L. Then, 
using the fractal Einstein relation (Given and Mandelhrot 1988), d, = df + 5, the diffusion 
exponent d, is obtained. 

Instead, we construct a bulk resistor in the following way. We consider the carpet as a 
metallic sheet with a bole and assign a unit resistance on each subsquare of carpets except the 
hole. We then get a bulk resistor with number of resistors (bz - lZ) on the first generation 
of the carpet. In a bulk resistor with b = 5 and 1 = 1, for example, we consider the upper 
(and lower) 10 subsquares as a bulk resistor with resistance R I ,  and middle four subsquares 

0305-4470/93~l5655+061Eo7.50 @ 1993 IOP Publishing Ltd 5655 



5656 Mann Ho' Kim et a1 

Figure 1. Cmstlucfion of an effective bulk mistor. (0) Schematic electric field lines (broken 
curves) on the carpet. (b) Effective bulk resistor as a trapezaidal shap and reeraOgular shape, pm 
( I )  and part (2). respedively. 

seperated by the hole as a bulk resistor with resistance Rz. These three resistors form a bulk 

For homogeneous materials, a macroscopic resistance R is usually obtained by the 
macroscopic equation R = p i ,  which may be a good approximation for common conductors. 
Such macroscopic resistance depends only on the geomeaical factors such as the length 1 and 
the cross-section area A.  Because of the presence of the hole in the carpet, the elechic field 
through the carpet is not uniform and it may not be so simple to find exact values of RI and R2. 
If we neglect edge effects near holes and boundaries, however, we can use the macroscopic 
equation for R to calculate effective buIk resistances RYff and R;" approximately. Figure 1 
exhibits the construction of an effective bulk resistor for RTff and R;ff with b = 5 and I = 1 
as an example. Since the electric field lines on the carpet are visualized as broken curves in 
figure l(a), the upper and lower parts-part (1) in figure l(bfiand the middle part-part (2) 
in figure l(b)-may be approximately treated as a trapezoidal and a rectangular shape of bulk 
resistor, respectively. Using the macroscopic equation with p = 1, effective bulk resistances 
R P  and R F  for these shapes of effective bulk resistor can be easily calculated to give 

' resistor with total resistance of the first generation of carpet. R T ( ~ )  = 2R1+ R2. 

I' R;" = - b - 1  b 
R F =  7 log- ~ and 

b-1 b - 1 '  

Thus total resistance of the first generation of carpet becomes 

6 - 1  b I 
R;ff(l) = - log-+- 

1 b - 1  b - I  

For the second generation of carpet, the effective bulk resistance R; and Rh can approximately 
be written in the same fashion to yield 

6 - 1  b 
R' - - log -R;ff(l) ' -  21 6 - 1  (3) 
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and 

Therefore the total effective resistance of the second generation becomes 

Rgff(2) = 2RI + R I  = [R:ff(1)]2 . (5) 

By continuing these procedures to the nth generation of carpet, we have 

R:ff(n) = [ R F ( l ) ] "  . (6) 

Since the linear size of the nth generation carpet is i = b", from (2) and (6), we get the 
resistance exponent i: : 

According to the fractal Einstein relation (d, = f + d f ) ,  we thus obtain the effective exponent 
Gfi: 

b - log [ (7 log - + ') (b2 - 1 2 ) ]  (log b)-' . 
b - l  b - l  dw - 

We can also establish upper and lower bounds for easily in the following way. When 
one treats part (1) of ,the bulk resistor as a rectangle with the cross-sectional length b - I  (orb), 

R1,,,,in = g). Following the above procedure, the upper and lower bounds for the effective 
exponent d, are thus given by 

one can obtain the maximum (or minimum) bulk resistance, RI,,- = (y)(&) = 1 (or 

&F' = log [ (b b - 1  + m) 1 (b2 - 1 2 ) ]  (log b)-' 

em = log [(A) (b2 - 6')] (log b)-' 

It would be worthy to note that our lower bound, equation ( l o ) ,  is the same as the result of 
an approximate Migdal-Kadanoff renormalization-group calculation obtained by Gefen er al 
(1984a) and corrected by Taguchi (1988a). 

We have performed numerical simulations on a family of Sierpinski carpets to check the 
accuracy for our bounds of d,. First, we have generated Sierpinski carpets using the generator 
(Zhuang and Yao 1991, Kim er a1 1992). We then randomly choose a point and start a random 
walker. If a walker touches the boundary of carpets, we discad the walker and start a new 
walker at a newly chosen point. In order to get walks with alarger number of steps N, we select 
a starting point within a central part, which is seperated at least by d'% from the boundaries 
of the carpets. In this way we can generate RWs of N = 10000 steps without touching the 
boundaries of the carpets, ranging from the seventh generation for (b, I )  = ( 3 , 1 ) ,  the sixth 
generation for (42). the fifth generation for (51) and (5,3), and the fourth generation for (6,2), 
(7,1), (7,3), (82) and (8,3). The end-to-end distances averaged over 100000 configurations 
are plotted versus 1/N. The values of d ,  are then obtained by least-square fitting. Numerical 
results on these carpets are shown in table 1 and compared with the lower and upper bounds. 
All numerical data are well located between the lower and upper bounds within numerical 
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lkblc 1. Comparison with numericsal data. 

3. 1 1.893 2.033 2.262 2139 2.106i.0.016 
4.2 1.793 2.085 2292 2172 2.166i0.016 
5,  I 1.975 2.005 2.113 2.057 2.092f 0.017 
5,3 1.723 2.122 2.292 2.193 2.197f.0.014 
6.2 1.934 2.020 2161 2.085 2.154i0.017 
7, 1 1.989 2W2 2.069 2.035 2.072 i0.016 
7.3 1.896 2.039 2.183 2.106 2.148f.0.014 
8.2 1.969 2.007 2.107 2.055 2.090+0.015 
8,4 1.862 2.057 2.195 2.115 2.159~00.015 

Figure 2 (13, 3) capets wilh various lacunarities. (a) L = 2.535, (b) L = 1.038, (c) and (d) 
L = 0.221. 

errors. From simulations, however, the results for the fourth generations of carpets seem tr Se 
close to the upper bounds. 

We have also examined the dependence of d,  on the lacunarity which measures how the 
holes are distributed on the carpet without varying the value of b and I ,  i.e. df. Following 
Gefen et al(1984a), the lacunarity L is defined by 

where (n) = xi n i / n .  Here n is the number of a b x b cell with I x 1 covering, and ni is 
the number of non-empty subsquares for each ith covering. Figure 2 shows some examples 
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Figure 3. Dependence of d,  on the lacunarity for (13.3) carpetE. The upper and lower bounds for 
carpets are 2.081 and 2.005 (shown as full circles in inset), respenively. (a) dw = 2.078 * 0.016, 
L = 2.535, (6) d, = 2.043 * 0.015, L = 1.038, (c) d,  = 2.028 * 0.016, L = 0.221, and 
(4 d, = 2.028 i 0.17, L = 0.221. More details for larger N are exhibited in the inset. 

of (13, 3) carpets with various lacunarities, L = 2.535. 1.038 and 0.221. Our numerical 
results (shown in figure 3) are also well located within the the upper and lower bounds, but 
exhibit a strong dependence of dw on the lacunarity. Note that two numerical results for same 
lacunaritiy (L = 0.221) are located at almost the same value of d,. The carpets of different 
hole distributions seem to have different values of 4, even if they have the same values of b 
and 1. However, OUT approximate theory does not distinguish the systems' different lacunarity. 

In summary, we have established the upper and lower bounds for the anomalous diffusion 
exponent on a family of Sierpinski carpets. Our lower bound turns out to be the same as the well 
known result by the renormalization goup calculation. We also find an effective exponent 
for the comparison with numerical simulations. Our bounds are confirmed via numerical 
simulations on various carpets. The numerical simulations with the carpets of different 
lacunarities show that the value of d, strongly depends on the lacunarity. Our approximate 
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theory of dw does not take into account differences in electric field due to lacunarities. It will 
be interesting to study how to incorporate the lacunarity effects into our theory. 
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